
© 2020, Object Computing, Inc. (OCI). All rights reserved. No part of these notes may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior, written permission of Object Computing, Inc. (OCI)

objectcomputing.com

HOME TO GRAILS & MICRONAUT

Single Page Apps for a
Microservices Architecture

Presented by Zachary Klein
Senior Software Engineer

WEBINAR
HOME TO GRAILS & MICRONAUT

© 2020, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com

HOME TO GRAILS & MICRONAUT

2

About Me

• Zachary Klein

• Senior Software Engineer

• “Full Stack!”

• OSS contributor to Grails and
Micronaut

• Twitter: @ZacharyAKlein

▸ Brief Introduction to Micronaut

▸ RESTful Backends with Micronaut

▸ API Gateways

▸ Security with JWT

▸ Token Propagation

▸ Multi-tenancy

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

AGENDA

BRIEF INTRODUCTION TO MICRONAUT

▸ Designed with Microservices in mind

▸ Reactive HTTP server built on Netty

▸ AOT (Ahead of Time) Compilation for DI, AOP, and
configuration

▸ Declarative HTTP Client

▸ “Natively” Cloud-Native: service-discovery, load-
balancing, circuit-breakers, tracing, and more!

▸ Support for Java, Kotlin and Groovy

MICRONAUT

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

MICRONAUT: GETTING STARTED

~ curl -s "https://get.sdkman.io" | bash
~ source "$HOME/.sdkman/bin/sdkman-init.sh"
~ sdk install micronaut
~ mn create-app hello-world

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

https://micronaut.io/download.html

MICRONAUT CLI

▸ Language defaults to Java

▸ Use --lang to specify groovy or kotlin

▸ Build tool defaults to Gradle

▸ Use --build to specify maven

▸ Run mn without arguments to enter interactive mode
- includes tab-completion

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

@Controller("/")
class HelloController {

 @Get("/hello/{name}")
 String hello(String name) {
 return "Hello " + name;
 }

}

MICRONAUT: CONTROLLERS & CLIENTS

@Client("/")
interface HelloClient {

 @Get("/hello/{name}")
 String hello(String name);

 // Implementation generated
 // at compile time
}

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

MICRONAUT: DEPENDENCY INJECTION

@Singleton //Bean definition generated at compile time
class WeatherService {
 Integer currentTemp() { //... }
}

@Controller('/weather')
class WeatherController {

 @Inject WeatherService weatherService
 //DI computed at compile time

 @Get("/")
 Integer currentTemp() {
 return weatherService.currentTemp()
 }
}

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

MICRONAUT: CLOUD NATIVE

//Lookup client from service-discovery registry
@Client(id="billing", path=“/billing")
interface BillingClient { ... }

//Automatically retry failing calls
@Client("https://api.external.service")
@Retryable(attempts = '3', delay = '5ms')
interface ExternalApiClient { ... }

//Immediately fail after set number of failures
//Begin accepting calls after `reset` interval
@Singleton
@CircuitBreaker(attempts = '5', reset = '300ms')
class MyService { ... }

SERVICE DISCOVERY

 RETRYABLE

CIRCUIT BREAKERS

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

RESTFUL BACKENDS WITH MICRONAUT

BackendFrontend

REST

{JSON}

BackendFrontend

REST

{JSON}

▸ Declarative Routes via method annotations:

▸ @Get, @Put, @Post, @Delete

▸ JSON binding/rendering via Jackson

▸ Request Arguments via annotations:

▸ @Header, @Body, @CookieValue, @QueryValue

MICRONAUT & REST

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

JACKSON: JSON BINDING
public class Author {

 private String name;

 @JsonSerialize(MySerializer.class)
 private Date birthday;
}

@Post(“/")
public HttpResponse<Author> save(
 @Body Author author) {

 if(bookRepository.save(author)) {
 return HttpResponse.ok();
 } else {
 /* handle error */
 }
}

https://www.baeldung.com/jackson-annotations

fetch("http://localhost:8080/
author/", {
 method: "POST",
 headers: new Headers({
 "Content-Type": "application/
json"
 }),
 body: JSON.stringify({
 name: "Author's Name",
 birthday: "01/31/1985"
 })
})

JAVASCRIPT

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

https://www.baeldung.com/jackson-annotations

JACKSON: JSON RENDERING

{
 “name": "Title Here”,
 "author": {
 "name": "Author"
 },
 "pages": 150,
 "tags": [
 "tech",
 "bestseller"
]
}

@JsonIgnoreProperties({"id", "version"})
public class Book {

 private Long id;
 private Long version;

 @JsonProperty(“name")
 private String title;
 private Author author;
 private Integer pages;
 private List<String> tags;
}

@Get("/{id}")
public Book show(Serializable id) {

 return bookRepository.get(id);
}

https://www.baeldung.com/jackson-annotations

JSON

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

https://www.baeldung.com/jackson-annotations

@Controller("/book")
class BookController {

 @Post
 HttpResponse<BookDetails> save(@Valid @Body BookDetails bookDetails) { /* .. */}

 @Put
 HttpResponse<BookDetails> update(@Valid @Body BookDetails bookDetails) { /* .. */}

 @Delete("/{id}")
 HttpResponse delete(Serializable id) { /* .. */}

 @Get(“{?max,offset}")
 @Transactional(readOnly = false)
 HttpResponse<List<Book>> list(@Nullable Integer max, @Nullable Integer offset) { /* .. */}

 @Get("/{id}")
 @Transactional(readOnly = true)
 HttpResponse<BookDetails> get(Serializable id) { /* .. */}

 HttpResponse<Integer> count() { /* .. */}

}

REST CONTROLLER
BOOKCONTROLLER.JAVA

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

ENABLING CORS

▸ CORS support included in
Micronaut

▸ Disabled by default

▸ Can specify allowed origins,
methods, headers, max age,
and more.

micronaut:
 application:
 name: my-app
 server:
 cors:
 enabled: true

APPLICATION.YML

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

API GATEWAYS

Backend

Frontend

RE
ST

{J
SO

N}

BillingMailAnalyticsInventory

Frontend

▸ Microservice Architectures implement service granularity

▸ Granularity offers many benefits, but complicates life for SPAs

▸ Services may be registered through service discovery (not
known URLs)

▸ Not all clients (SPAs, mobile apps, traditional web apps) require
the same data

▸ The frontend (SPA) shouldn’t need to be “aware” of the
topology of the backend system

MICROSERVICES VS “TRADITIONAL” BACKEND

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

▸ Architectural pattern for microservice-based systems

▸ Expose a single client-facing API (for SPA, mobile, etc)

▸ Minimizing integration points - decoupling

▸ https://microservices.io/patterns/apigateway.html

▸ https://docs.microsoft.com/en-us/azure/architecture/
microservices/design/gateway

API GATEWAYS

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

https://microservices.io/patterns/apigateway.html
https://docs.microsoft.com/en-us/azure/architecture/microservices/design/gateway
https://docs.microsoft.com/en-us/azure/architecture/microservices/design/gateway

Backend

Frontend

BillingMailAnalyticsInventory

Frontend

BillingMailAnalyticsInventory

Frontend

Billing

Frontend

MailAnalyticsInventory

Gateway

Billing

Frontend

MailAnalyticsInventory

Gateway

▸ Many features can be implemented at the API Gateway level:

▸ Rate-limiting

▸ Logging/tracing

▸ Request aggregation

▸ API Versioning

▸ Gateways should not be orchestrators!

▸ Open Source implementations (Netflix Zuul, Lyft Envoy, etc)

▸ Cloud providers (e.g, AWS) often supply their own API Gateway product

▸ Gateways can also be implemented as standalone services

API GATEWAYS

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

▸ Consistent APIs between controller (service) and client (gateway)

▸ Use of shared API libraries can simplify development

▸ Shared API: interface ProductAPI - specifies API for product resource

▸ Service: ProductController implements ProductAPI - specifies business
logic

▸ Gateway: ProductClient extends ProductAPI - consumes backend API on
behalf of edge-clients

▸ Support for API versioning, tracing, load balancing, API docs, etc

▸ “Should I Make My Own API Gateway?” - https://www.youtube.com/watch?
v=YO6Sg4yaqC0

BUILDING A GATEWAY WITH MICRONAUT

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

API DOCUMENTATION

▸ Micronaut can generate OpenAPI (Swagger) YAML
definitions at compilation time

▸ Standard Micronaut annotations (@Controller, @Get,
@Consumes, etc) and method return types (POJOs) will
be analyzed and corresponding Swagger YML written
to the file

▸ Standard Swagger annotations can be used to
customize/override the generated YAML

▸ Micronaut can handle merging of OpenAPI schemas
from multiple modules (e.g., when using Micronaut
Security)

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

API DOCUMENTATION

https://micronaut-projects.github.io/micronaut-openapi/latest/guide/index.html

micronaut:
 router:
 static-resources:
 swagger:
 paths: classpath:META-INF/swagger
 mapping: /swagger/**

src/main/resources/application.yml

Configuration to expose
Swagger YAML over the server:

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

https://micronaut-projects.github.io/micronaut-openapi/latest/guide/index.html#openApiViews

▸ Version by URL: @Get("/v1/user/profile")

▸ Using config property:

 @Value("${core.api.version}")
 String version

 @Get("/${version}/user/profile")

‣ Client-facing versioning can be separate from versioning within

the microservice architecture

MICRONAUT API VERSIONING

core:
 api:
 version: v1

APPLICATION.YML

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

BillingMailAnalyticsInventory

Frontend

Gateway
V1

Gateway
V2

BillingMailAnalyticsInventory

Frontend

Gateway
V1

Gateway
V2

▸ Partition your API

▸ Support different
client needs (web vs
mobile etc)

BACKEND PER FRONTEND GATEWAY

Web Admin WebMobile

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

MICRONAUT PETSTORE

https://github.com/micronaut-projects/micronaut-examples/tree/master/petstore

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

https://github.com/micronaut-projects/micronaut-examples/tree/master/petstore

SECURITY WITH JWT

JWT: JSON WEB TOKEN
‣ Open standard for representing

claims securely between two parties

‣ Tokens can be signed with either a
secret or public/private key

‣ Standard approach for stateless
authentication

‣ Ideal for transmitting authentication
& authorization data between
microservices and single-page-apps

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

MICRONAUT SECURITY

▸ Core Micronaut Library - supports JWT, OAuth 2.0

▸ Annotation-based API & config-based URL mappings

▸ Support for token propagation

▸ Supports RFC 6750 Bearer Token

▸ JWTs can be read from cookie

dependencies {
 compile "io.micronaut:micronaut-security-jwt"
}

micronaut:
 security:
 enabled: true
 token:
 jwt:
 enabled: true
 signatures:
 secret:
 generator:
 secret: changeMe

APPLICATION.YML

BUILD.GRADLE

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

https://tools.ietf.org/html/rfc6750

@SECURED ANNOTATION

▸ @Secured annotation applied
to controllers and methods

▸ All routes blocked by default

▸ Can require authentication
and/or authorization (role-
based)

▸ Alternative: JSR-250 security
annotations are also
supported: @PermitAll,
@RolesAllowed, @DenyAll

import java.security.Principal;

@Secured("isAuthenticated()")
@Controller("/")
public class HomeController {

 @Get("/")
 String index(Principal principal) {
 return principal.getName();
 }

 @Secured({"ROLE_ADMIN", "ROLE_X"})
 @Get("/classified")
 String classified() {
 return /* REDACTED */;
 }
}

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

https://jcp.org/en/jsr/detail?id=250

‣ Unauthorized request is made to API

‣ Responds with 401

‣ Client POSTs to login endpoint

‣ Server responds with JWT

‣ Client includes access token in the
Authorization header for subsequent
requests

‣ Server validates the incoming token

‣ If authorized, server responds with
resource

MICRONAUT JWT SECURITY

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

‣ Delegate authentication to a
third-party provider (or custom
provider)

‣ Requires a mapping between
the provider’s auth and user
identity and authorization
(within your application)

‣ Typically configured via a client
ID/secret pair and a callback
URL

OAUTH 2.0

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

OAUTH 2.0

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

MICRONAUT SECURITY & OAUTH GUIDES

https://guides.micronaut.io/tags/security.html

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

https://guides.micronaut.io/tags/oauth2.html

TOKEN PROPAGATION

TOKEN PROPAGATION

▸ Micronaut can embed an
access token within the request

▸ Token can be stored as a
cookie, or within an HTTP
Header

▸ Services to which tokens
should be propagated can be
specified via config

▸ Allows each service to enforce
authentication/authorization

micronaut:
 security:
 enabled: true
 token:
 jwt:
 enabled: true
 writer:
 header:
 enabled: true
 propagation:
 enabled: true
 service-id-regex: "inventory"

APPLICATION.YML

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

https://guides.micronaut.io/micronaut-token-propagation

https://guides.micronaut.io/micronaut-token-propagation/guide/index.html

MULTITENANCY

MULTITENANCY

▸ An approach for partitioning
user data within the application
state (e.g, database)

▸ Micronaut supports tenant
propagation across services

▸ Can read tenant from HTTP
header, Cookie, or Subdomain
(acme.mysite.com)

▸ Can write tenant to HTTP
header or Cookie

micronaut:
 multitenancy:
 propagation:
 enabled: true
 service-id-regex: 'inventory'
 tenantresolver:
 httpheader:
 enabled: true
 tenantwriter:
 httpheader:
 enabled: true

APPLICATION.YML

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

@Get("/")
List<ProductDetails> list(@Header tenantId) {

}

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

https://guides.micronaut.io/micronaut-multitenancy-propagation

DEMO

MICRONAUT PETSTORE

https://github.com/micronaut-projects/micronaut-examples/tree/master/petstore

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

https://github.com/micronaut-projects/micronaut-examples/tree/master/petstore

▸ Micronaut is a powerful microservice solution

▸ SPAs (and other clients) must be considered in
architecture design

▸ API Gateways are a powerful approach

▸ In lieu of third-party solutions, Micronaut makes
an excellent choice for building custom gateways
if required

▸ Token propagation (for security, multitenancy)
simplifies interservice communication for SPAs
and other edge-clients

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE

SUMMARY

© 2020, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com

HOME TO GRAILS & MICRONAUT

55

Events:
● objectcomputing.com/events

Training:
● objectcomputing.com/training
● grailstraining.com
● micronauttraining.com

Or email 2GM@objectcomputing.com to schedule a custom training
program for your team online, on site, or in our state-of-the-art,
Midwest training lab.

LEARN MORE ABOUT OCI EVENTS AND TRAINING
HOME TO GRAILS & MICRONAUT

CONNECT WITH
US

1+ (314) 579-0066

@objectcomputing

objectcomputing.com

© 2020, Object Computing, Inc. (OCI). All rights reserved. objectcomputing.com

HOME TO GRAILS & MICRONAUT

56

© 2020, Object Computing, Inc. (OCI). All rights reserved. No part of these notes may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior, written permission of Object Computing, Inc. (OCI)

objectcomputing.com

HOME TO GRAILS & MICRONAUT

Single Page Apps for a
Microservices Architecture

Presented by Zachary Klein

WEBINAR
HOME TO GRAILS & MICRONAUT

