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About Me

• Zachary Klein 

• Senior Software Engineer 

• “Full Stack!” 

• OSS contributor to Grails and 
Micronaut 

• Twitter: @ZacharyAKlein



▸ Brief Introduction to Micronaut 

▸ RESTful Backends with Micronaut 

▸ API Gateways 

▸ Security with JWT 

▸ Token Propagation 

▸ Multi-tenancy
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AGENDA



BRIEF INTRODUCTION TO MICRONAUT



▸ Designed with Microservices in mind 

▸ Reactive HTTP server built on Netty 

▸ AOT (Ahead of Time) Compilation for DI, AOP, and 
configuration  

▸ Declarative HTTP Client 

▸ “Natively” Cloud-Native: service-discovery, load-
balancing, circuit-breakers, tracing, and more! 

▸ Support for Java, Kotlin and Groovy

MICRONAUT
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MICRONAUT: GETTING STARTED

~ curl -s "https://get.sdkman.io" | bash
~ source "$HOME/.sdkman/bin/sdkman-init.sh"
~ sdk install micronaut
~ mn create-app hello-world
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https://micronaut.io/download.html



MICRONAUT CLI

▸ Language defaults to Java 

▸ Use --lang to specify groovy or kotlin 

▸ Build tool defaults to Gradle 

▸ Use --build to specify maven 

▸ Run mn without arguments to enter interactive mode 
- includes tab-completion

SINGLE PAGE APPS FOR A MICROSERVICE ARCHITECTURE



@Controller("/") 
class HelloController {

  @Get("/hello/{name}")
  String hello(String name) { 
    return "Hello " + name; 
  }

}

MICRONAUT: CONTROLLERS & CLIENTS

@Client("/")
interface HelloClient {

  @Get("/hello/{name}")
  String hello(String name);

  // Implementation generated 
  // at compile time
}
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MICRONAUT: DEPENDENCY INJECTION

@Singleton //Bean definition generated at compile time
class WeatherService {
  Integer currentTemp() { //... }
}

@Controller('/weather')
class WeatherController {

    @Inject WeatherService weatherService
    //DI computed at compile time

    @Get("/")
    Integer currentTemp() {
      return weatherService.currentTemp()  
    }
} 
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MICRONAUT: CLOUD NATIVE

//Lookup client from service-discovery registry
@Client(id="billing", path=“/billing")
interface BillingClient { ... }

//Automatically retry failing calls
@Client("https://api.external.service")
@Retryable(attempts = '3', delay = '5ms')
interface ExternalApiClient { ... }

//Immediately fail after set number of failures
//Begin accepting calls after `reset` interval
@Singleton
@CircuitBreaker(attempts = '5', reset = '300ms')
class MyService { ... }

SERVICE DISCOVERY    

 RETRYABLE    

CIRCUIT BREAKERS    
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RESTFUL BACKENDS WITH MICRONAUT
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▸ Declarative Routes via method annotations: 

▸ @Get, @Put, @Post, @Delete

▸ JSON binding/rendering via Jackson 

▸ Request Arguments via annotations: 

▸ @Header, @Body, @CookieValue, @QueryValue

MICRONAUT & REST
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JACKSON: JSON BINDING
public class Author {

    private String name;

    @JsonSerialize(MySerializer.class) 
    private Date birthday;
}

@Post(“/") 
public HttpResponse<Author> save( 
    @Body Author author) { 

    if(bookRepository.save(author)) { 
      return HttpResponse.ok(); 
    } else {  
      /* handle error */  
    } 
} 

https://www.baeldung.com/jackson-annotations

fetch("http://localhost:8080/
author/", { 
    method: "POST", 
    headers: new Headers({ 
        "Content-Type": "application/
json" 
    }), 
    body: JSON.stringify({ 
        name: "Author's Name", 
        birthday: "01/31/1985" 
    }) 
}) 

JAVASCRIPT   
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https://www.baeldung.com/jackson-annotations


JACKSON: JSON RENDERING

{ 
  “name": "Title Here”, 
  "author": { 
    "name": "Author" 
  }, 
  "pages": 150, 
  "tags": [ 
    "tech", 
    "bestseller" 
  ] 
} 

@JsonIgnoreProperties({"id", "version"}) 
public class Book {

    private Long id;
    private Long version;

    @JsonProperty(“name") 
    private String title;
    private Author author;
    private Integer pages;
    private List<String> tags;
}

@Get("/{id}") 
public Book show(Serializable id) { 

    return bookRepository.get(id); 
} 

https://www.baeldung.com/jackson-annotations

JSON   
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https://www.baeldung.com/jackson-annotations


@Controller("/book") 
class BookController { 

    @Post 
    HttpResponse<BookDetails> save(@Valid @Body BookDetails bookDetails) { /* .. */} 

    @Put 
    HttpResponse<BookDetails> update(@Valid @Body BookDetails bookDetails) { /* .. */} 

    @Delete("/{id}") 
    HttpResponse delete(Serializable id) { /* .. */} 

    @Get(“{?max,offset}") 
    @Transactional(readOnly = false) 
    HttpResponse<List<Book>> list(@Nullable Integer max, @Nullable Integer offset) { /* .. */} 

    @Get("/{id}") 
    @Transactional(readOnly = true) 
    HttpResponse<BookDetails> get(Serializable id) { /* .. */} 
         
    HttpResponse<Integer> count() { /* .. */} 

} 

REST CONTROLLER
BOOKCONTROLLER.JAVA
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ENABLING CORS

▸ CORS support included in 
Micronaut 

▸ Disabled by default 

▸ Can specify allowed origins, 
methods, headers, max age, 
and more.

micronaut:
    application:
        name: my-app
    server:
        cors:
            enabled: true

APPLICATION.YML
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API GATEWAYS
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▸ Microservice Architectures implement service granularity 

▸ Granularity offers many benefits, but complicates life for SPAs 

▸ Services may be registered through service discovery (not 
known URLs) 

▸ Not all clients (SPAs, mobile apps, traditional web apps) require 
the same data 

▸ The frontend (SPA) shouldn’t need to be “aware” of the 
topology of the backend system

MICROSERVICES VS “TRADITIONAL” BACKEND
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▸ Architectural pattern for microservice-based systems 

▸ Expose a single client-facing API (for SPA, mobile, etc) 

▸ Minimizing integration points - decoupling 

▸ https://microservices.io/patterns/apigateway.html 

▸ https://docs.microsoft.com/en-us/azure/architecture/
microservices/design/gateway

API GATEWAYS
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https://microservices.io/patterns/apigateway.html
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▸ Many features can be implemented at the API Gateway level: 

▸ Rate-limiting 

▸ Logging/tracing 

▸ Request aggregation 

▸ API Versioning 

▸ Gateways should not be orchestrators! 

▸ Open Source implementations (Netflix Zuul, Lyft Envoy, etc) 

▸ Cloud providers (e.g, AWS) often supply their own API Gateway product 

▸ Gateways can also be implemented as standalone services

API GATEWAYS
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▸ Consistent APIs between controller (service) and client (gateway) 

▸ Use of shared API libraries can simplify development 

▸ Shared API:  interface ProductAPI - specifies API for product resource 

▸ Service: ProductController implements ProductAPI - specifies business 
logic

▸ Gateway: ProductClient extends ProductAPI - consumes backend API on 
behalf of edge-clients 

▸ Support for API versioning, tracing, load balancing, API docs, etc 

▸ “Should I Make My Own API Gateway?” - https://www.youtube.com/watch?
v=YO6Sg4yaqC0

BUILDING A GATEWAY WITH MICRONAUT
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API DOCUMENTATION

▸ Micronaut can generate OpenAPI (Swagger) YAML 
definitions at compilation time 

▸ Standard Micronaut annotations (@Controller, @Get, 
@Consumes, etc) and method return types (POJOs) will 
be analyzed and corresponding Swagger YML written 
to the file 

▸ Standard Swagger annotations can be used to 
customize/override the generated YAML 

▸ Micronaut can handle merging of OpenAPI schemas  
from multiple modules (e.g., when using Micronaut 
Security)
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API DOCUMENTATION

https://micronaut-projects.github.io/micronaut-openapi/latest/guide/index.html

micronaut:
  router:
    static-resources:
      swagger:
        paths: classpath:META-INF/swagger
        mapping: /swagger/**

src/main/resources/application.yml

Configuration to expose 
Swagger YAML over the server:
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https://micronaut-projects.github.io/micronaut-openapi/latest/guide/index.html#openApiViews


▸ Version by URL:  @Get("/v1/user/profile")

▸ Using config property:  

  @Value("${core.api.version}")  
   String version  
      
   @Get("/${version}/user/profile")
                 
‣ Client-facing versioning can be separate from versioning within 

the microservice architecture 

MICRONAUT API VERSIONING

core:
  api:  
    version: v1

APPLICATION.YML
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▸ Partition your API 

▸ Support different 
client needs (web vs 
mobile etc)

BACKEND PER FRONTEND GATEWAY

Web Admin WebMobile
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MICRONAUT PETSTORE

https://github.com/micronaut-projects/micronaut-examples/tree/master/petstore
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https://github.com/micronaut-projects/micronaut-examples/tree/master/petstore


SECURITY WITH JWT



JWT: JSON WEB TOKEN
‣ Open standard for representing 

claims securely between two parties 

‣ Tokens can be signed with either a 
secret or public/private key 

‣ Standard approach for stateless 
authentication  

‣ Ideal for transmitting authentication 
& authorization data between 
microservices and single-page-apps
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MICRONAUT SECURITY

▸ Core Micronaut Library - supports JWT, OAuth 2.0 

▸ Annotation-based API & config-based URL mappings 

▸ Support for token propagation 

▸ Supports RFC 6750 Bearer Token  

▸ JWTs can be read from cookie 

dependencies {
   compile "io.micronaut:micronaut-security-jwt"
}

micronaut:
  security:
    enabled: true
    token:
      jwt:
        enabled: true 
        signatures:
          secret:
            generator: 
              secret: changeMe

APPLICATION.YML

BUILD.GRADLE
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https://tools.ietf.org/html/rfc6750


@SECURED ANNOTATION

▸ @Secured annotation applied 
to controllers and methods 

▸ All routes blocked by default 

▸ Can require authentication 
and/or authorization (role-
based) 

▸ Alternative: JSR-250 security 
annotations are also 
supported: @PermitAll, 
@RolesAllowed, @DenyAll

import java.security.Principal;

@Secured("isAuthenticated()") 
@Controller("/")  
public class HomeController {

    @Get("/")  
    String index(Principal principal) {  
        return principal.getName();
    }

    @Secured({"ROLE_ADMIN", "ROLE_X"})
    @Get("/classified")  
    String classified() {  
        return /* REDACTED */;
    }
}
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https://jcp.org/en/jsr/detail?id=250


‣ Unauthorized request is made to API  

‣ Responds with 401 

‣ Client POSTs to login endpoint  

‣ Server responds with JWT 

‣ Client includes access token in the 
Authorization header for subsequent 
requests  

‣ Server validates the incoming token 

‣ If authorized, server responds with 
resource

MICRONAUT JWT SECURITY
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‣ Delegate authentication to a 
third-party provider (or custom 
provider) 

‣ Requires a mapping between 
the provider’s auth and user 
identity and authorization 
(within your application) 

‣ Typically configured via a client 
ID/secret pair and a callback 
URL

OAUTH 2.0
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OAUTH 2.0
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MICRONAUT SECURITY & OAUTH GUIDES

https://guides.micronaut.io/tags/security.html
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https://guides.micronaut.io/tags/oauth2.html



TOKEN PROPAGATION



TOKEN PROPAGATION

▸ Micronaut can embed an 
access token within the request 

▸ Token can be stored as a 
cookie, or within an HTTP 
Header 

▸ Services to which tokens 
should be propagated can be 
specified via config 

▸ Allows each service to enforce 
authentication/authorization

micronaut:
  security:
    enabled: true
    token:
      jwt:
        enabled: true
      writer:
        header:
          enabled: true
      propagation:
        enabled: true
        service-id-regex: "inventory"

APPLICATION.YML
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https://guides.micronaut.io/micronaut-token-propagation

https://guides.micronaut.io/micronaut-token-propagation/guide/index.html


MULTITENANCY



MULTITENANCY

▸ An approach for partitioning 
user data within the application 
state (e.g, database)  

▸ Micronaut supports tenant 
propagation across services  

▸ Can read tenant from HTTP 
header, Cookie, or Subdomain 
(acme.mysite.com) 

▸ Can write tenant to HTTP 
header or Cookie

micronaut:
  multitenancy:
    propagation:
      enabled: true
      service-id-regex: 'inventory'
    tenantresolver:
      httpheader:
        enabled: true
    tenantwriter:
      httpheader:
        enabled: true

APPLICATION.YML
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@Get("/")
List<ProductDetails> list(@Header tenantId) {
   
}
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https://guides.micronaut.io/micronaut-multitenancy-propagation



DEMO



MICRONAUT PETSTORE

https://github.com/micronaut-projects/micronaut-examples/tree/master/petstore
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https://github.com/micronaut-projects/micronaut-examples/tree/master/petstore


▸ Micronaut is a powerful microservice solution 

▸ SPAs (and other clients) must be considered in 
architecture design 

▸ API Gateways are a powerful approach 

▸ In lieu of third-party solutions, Micronaut makes 
an excellent choice for building custom gateways 
if required 

▸ Token propagation (for security, multitenancy) 
simplifies interservice communication for SPAs 
and other edge-clients
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SUMMARY
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Events: 
● objectcomputing.com/events 

Training: 
● objectcomputing.com/training 
● grailstraining.com 
● micronauttraining.com 

Or email 2GM@objectcomputing.com to schedule a custom training 
program for your team online, on site, or in our state-of-the-art, 
Midwest training lab.

LEARN MORE ABOUT OCI EVENTS AND TRAINING
HOME TO GRAILS & MICRONAUT
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